
278 Journal of  Alloys and Compounds, 213/214 (1994) 278-285 
JALCOM 4022 

Adjustment of activity coefficients as a function of changes in 
temperature, using the specific interaction theory* 
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Abstract 

The aim of this work is to propose and to check approximations to calculate from only a few experimental 
measurements, ionic strength I and temperature T, influences on Gibbs' energy G, formal redox potential E and 
standard equilibrium constant K. Series expansions vs. T are first used: S and Cp/2T ° are typically the first- and 
second-order terms in -G. In the same way, - A H  and T 2 ACv/2 are the first- and second-order terms of 
R In K expansions vs. 1/T. This type of approximation is discussed for E of the M+÷/M 3÷, MOz2÷/MO~ " 
and MO2(CO3)34-/q~IO2(CO3)3 5- couples (M-=U or Pu) measured from 5 to 70 °C, for the standard AG of some 
solid U compounds, calculated from 17 to 117 °C, and for ACp, AG and log K of the CO2(aq)/I--ICO3- equilibrium 
from 0 to 150 °C. Excess functions X ~x are then calculated from activity coefficients 3": enthalpy H or heat capacity 
Cp adjustment as a function of I changes is needed only when the 3' adjustment as a function of T changes is 
needed. The variations in the specific interaction theory coefficient E with T are small and roughly linear for 
the above redox equilibria and for the mean y of chloride electrolytes: first-order expansion seems enough to 
deduce e, and then the excess functions G ~x, S ex and H eX, in this T range; but second-order expansion is more 
consistent for estimation of Cp ~x. 

I. Introduction 

Chemical speciation in aqueous solutions is needed 
to understand and to predict the migration of ra- 
dioelements in groundwaters  from waste disposal. Nor- 
mal redox potentials E and equilibrium constants K 
are needed to predict speciation. They are usually 
measured with good accuracy only in high ionic strength 
1 electrolytes, but  in most  groundwaters studied for 
radioactive waste disposal, I is lower and the temper-  
ature T is higher than in usual laboratory conditions. 
Activity coefficients 3' are needed to calculate the 
influence of  I on K and E,  typically to extrapolate them 
to the standard state (infinite dilution). We focus on 
actinides. We will, in fact, use the specific interaction 
theory (SIT) for adjustment  as a function of changes 
in I and we will test some approximations, namely 
Taylor 's  series expansion for adjustment as a function 
of T changes. This type of calculation with the first 
derivative of In 3' has already been  made  for the NaCI 
Pitzer parameters  [1], but  their T variations are not 
linear: empirical formulae similar to eqn. (1) are now 
proposed [2]. We find that the shapes of  the curves 
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representing the T variations of  the LiC1, KCI and SrCl2 
Pitzer parameters  differ from the NaCl curve. In ad- 
dition, the two second virial Pitzer parameters  are 
correlated [3] and many  experimental  points are then 
needed to fit them: this leads to some difficulties [4, 
5] for the complex ions whose predominance domain 
is small. There  are even fewer data measured at different 
temperatures .  We then prefer  to calculate the 3' of 
complex ions by using [6--10] the SIT [11], which needs 
only one fitted pa rame te r  e. Many published data on 
changes in mean  3' with T are measured at water- 
saturated pressure,  but we here focus on the influence 
of T at (constant) a tmospheric  pressure and then at 
T less than 100 °C. 

We here first evaluate the order of  magnitude of 
the influence of T on E,  log K and G, from E mea-  
surements  and f rom some published Cv, AC v and K 
values. We then propose and discuss formulae for 
adjustments of  G, H,  S, Cp and K with changes in T. 
We then examine the influences of  T together with I 
on E measurements  and on some published mean 3'. 
Classical thermodynamic relations that we refer to 
in section 2 can then be used to adjust the excess 
contribution to G, H, S and Cp, as a function of 
changes in I and T, by using 3' calculated from the 
• value. 
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2. Working equations 

2.1. Temperature variations o f  thermodynamic functions 
The variations with T in solid compound heat capacity 

(eqn. ( la))  are typically calculated with empirical coef- 
ficients a, b, d, e in thermochemical data bases, e.g. 
ref. 11. We easily deduce similar expressions for the 
entropy S (eqn. (2)) and for the enthalpy H (eqn. (3)) 
from the classical thermodynamic relations (4a) and 
(5) 

d e 
C w . ~ = a + b T +  ~. + T-- 5 ( la)  

T + b ( r _ r o )  S,,7-=St. ro+a In T----g 

;)2(1 lo0 
b TO2) H,, T= Ht, To + a( T -  T°) + -~ ( T 2 - 

(, 1) T - e  (3) + d  In T---; 7" o 

n) ,  T = Cw. T (4a) 

'H,, 7- = - T2Cp,, ~ (4b) 

Cp,. r 
s;, 7-= T (5) 

C;,,T Cp,,r 
Sj, 7-- T T 2 (6) 

G). r = - S,. r (7) 

GL T = H , ,  T-- TS1. T (8) 

S, C o and Z~t-I/T 2 are the first-order terms of T series 
expansion of respectively - G (eqn. (7)), H (eqn. (4a)) 
and R In K (eqn. ( l la)) .  G, H and log K can be directly 
measured. Relations (la),  (2), (3), (4a), (4b) and (5)-(8) 
are valid at each I and T: we write a, b . . . .  and not 
al, r, bi. 7-, ... since we shall use eqns. (la), (2) and (3) 
only for T adjustments. We shall use eqns. ( la),  (2) 
and (3) together with eqns. (8) and (10) for discussion 
and to build Table 2. We shall see that Taylor's series 
expansions are also useful approximations in our T 
range in solution chemistry. For this, we shall use 

Cp,. ~ = Cp,. ro + C'p,. rot + Cp,. ~ot2/2 (lb) 

instead of eqn. (la).  As for Cp (eqn. ( lb))  from the 
differential relations (4a), (4b) and (5)--(7) and from 
similar In K relations (eqns. ( l la)- (13a)) ,  we shall 
expand G, H, S, E (eqn. (9)) and In K (eqn. (10)) into 
series as a function of T (or t; this is equivalent) about 
T=  T ° (eqn. (24) and Table 1). We shall also expand 
(last line of Table 1) In K as a function of 1/T (or f; 

this is equivalent) by using the Van't  Hoff (eqn. ( l la) ) ,  
and differential (eqns. (4b), (12a) and (13a)) relations 

AG,. T = -nFEI .  r (9) 

AGI. 7-= - R T  In KI. T (10) 

RT(ln//1, T)' = AH,, T/T (11a) 

RT2(In KI. T) "= ACp,, r-- 2 hill .  T/T (12a) 

RT3(InKI.  T)"'=T AC'p,.T-4 ACp,.T+6 M-I,,T/T (13a) 

R '(ln K,, r) = - AH,, 7- ( l lb)  

R "(ln K1, 7-) = T 2 hCp,, ~ (125) 

R "(In K,, r) = - T3( 2 ACp,. r-t- T hCp,. r) (135) 

2.2. Temperature variations o f  activity and specific 
interaction theory coefficients 

We calculate the activity coefficient Y(i) of an ion 
i by using the SIT [11]: 

log y(i),, r = -z(i)2DI. r+  •e(i ,  j ) rm( j )  (14a) 
J 

e(i, j ) r  are fitted parameters related to the ions i and 
j, with opposite charges, z(i) is the charge of the ion 
i. re(j) is the molality of the ion j.  e(i, J)r is supposed 
to be only T dependent: eqn. (14a) is then an ap- 
proximation, but we still use the symbol " = "  and not 
" = "  that we are writing only for Taylor's series ex- 
pansions as a function of T (or l/T). When m0)  is low 
enough (typically when j is at trace level), we disregard 
the e(i, j ) r  m(j) term [11]. We shall now omit i and 
j, and we shall take into account only one major ion 
j (eqn. (14b)). Since all equations are linear, gener- 
alization is straightforward [10]. Excess functions [12], 
eqns. (17), (18a)-(21a), (22) and (23), account for the 
transformation from ideal ( I=  0) to real solution. They 
introduce new linear relations. We refer to the exact 
equations (16a), (17), (18a)-(21a), (22) and (23) before 
using the Taylor series expansion (15): 

log ")11, r = -- z2(Dt, to+D),  rot+D7, rot2~2) 

q- m(ero + #rot + e'~ot2/2) (15) 

log Ko. r = log K~, r +  A log TI. r (16a) 

XI. T =Xo. T + X ~ r  (where X--- G or H or S or Cp) (17) 

G ~ r = R T  In Yl, r (18a) 

. . . .  RT2( In "/)I, r HI,  T-- ' (19a) 

S~Xr = -R[ ln  Yl. T+ T(ln T)}. r] (20a) 

CpTX. r = -RT[Z( ln  T)). r +  T(ln Y)7. r] (21a) 

(CpeX)}. 7-= -R[Z(ln y)}. 7-+ 4T(ln 7)7. 7-+ TZ(ln 7)7, 7-] 

(22) 
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TABLE 1. Series expansion coefficients x{0q~ro, of thermodynamic functions Xz, r 

X ~ _ X  {0} X {1 } X {2 } X {3 } X {  4 } 

G - S  _ C_p. C p - T C ' p  _ T 2 C ~ + 2 C p  
2T 6T z 24T 3 

H G c-G 
2 6 

S Cp TC'p - Cv T2C'~ + 2Cl, 
T 2T 2 6T  3 

2 

AH T ACp-2  ~ T 2 AC'p-4T ACp+6 AH T 3 AC~--6T 2 AC'p+ 18T ACp-24 AH 
R I n K  

T 2 2T 3 6T 4 24T ~ 

R In K" - A H  T2 ACp --T 3 TAC~+2 ACp T~ T 2 AC'~+6TAC'p+6 AC~ 
2 6 24 

The expansion is eqn. (24): XI. r = Eq~o(X~}ro + X~q~)x q, x= t=  T - T  ° except in the last line where x = f =  1/r-1~TO. X =- G, H, S, Cp 
or In K (first column). X = X  {°} and X {q+1} is the derivative of X{q}/(q + 1); typically the derivative value of X=-X {°} for I =  0 and T= T ° 
is X {0 and this corresponds to the exact thermodynamic relations (4a), (5) and (7). Typically, when X=-G (first line), 0, TO 
- (So ro + S~r~)t is first- (second column) order term of Gt, r. Numerical values of X ~q/ and X ~q~x are then needed to calculate X~ r , , 0,7"0 /,TO , 

by using eqn. (24). We calculate the numerical value of x~0q~ro (typically X~0t~ is - S0. ro when X -  = G from tabulated standard values 
of G0,ro, H0. ro or Cvo.ro, e.g. ref. 11). Numerical values of neither X ~  nor x~0q~r~o are tabulated: we calculate them by using eqns. 
(16b) or (18b)-(21b). Numerical values of Dr, to, D~, to, D~, r . . . . . .  ~-o, ~- . . . . .  are needed for this. We calculate D}. to, D1 #, r~, ETo ~ • . .  

values from tabulated Debye-Hfickel term values, Dr.r, and we measure (see text) the others. For consistency (see text), we do not 
write the X {q} terms that include a Cp contribution. 
"We tabulate the coefficients of the R In K Taylor expansion vs. 1/T (and not vs. T). 

(Cp~X)7, r = - R [ 6 ( l n  Y)~, r +  6T(ln Y)~', r +  T2(ln Y)~';'r] 

(23) 

Equa t ion  (16a) is the defini t ion of  y and  eqn. (17) is 
the excess funct ion definit ion; since they are  linear,  
eqns. (4a) and  (5) - (8)  are  still valid for  the excess 
functions.  W e  obta in  eqn.  (18a) f rom eqns.  (16a) and 
(10), eqn. (20a) f rom eqns. (18a) and  (7), eqn.  (19a) 
f rom eqns. (18a), (20a) and  (8), eqn.  (21a) f rom eqns. 
(19a) and (4a), eqn.  (22) f rom eqn. (21a),  and eqn. 
(23) f rom eqn. (22). Equa t ions  (18a) [13], (19a) [12], 
(20a) [13, 14] and  (21a) [2] have  m o r e  or  less a l ready 
been  p roposed .  AH (eqn.  (19a))  and  ACp (eqn. (21a))  
ad jus tments  as a funct ion of  changes  in I are needed  
only when  y ad jus tments  as a funct ion of  changes  in 
T are  needed .  T h e  3' der ivat ive in eqns.  (19a) - (21a) ,  
(22) and  (23) comes  f rom different ial  t h e r m o d y n a m i c  
equat ions  (and not  f rom series expansion) :  there  a re  
no approx imat ions  in these  equa t ions  tha t  can be  used  
for  any 3, theory.  T o  write t h e m  for  the  SIT,  we  subst i tute  
the S I T  equa t ion  (14b) into eqns. (16a) and  (18a)- (21a) :  

log y =  - z2Dt ,  T+mET 

log KI, r = l o g  K o . r + ~  "~2 D l . r - m  AcT 

GTXr=rT( -z2D1, r + m e t )  

(14b) 

(16b) 

(18b) 

ex  ~ 2 t t H,,  r - r T  (zED,, r - r n , ~ - )  (19b) 

Sy,Xr = r[zZ(D,, r + TD'z 7-) - m ( e r +  Te~.)] (20b) 

e x  _ _  2 I It Cpi, r -  rT[z (2D1, 7-+ TD,,  7-) - r n ( 2 E T +  T~-)]  (21b) 

' " D '  and D "  In  the s ame  way, E ,  E ,  come  f rom exact 
re la t ions  in eqns.  (19b)-(21b) .  We  finally write )(i, r 
( X = G ,  H,  C O or R In K)  Taylor ' s  series expansions:  

X l  r -~ ~ tv~q~ + v~q~x~,.q (24) , i,~x O. T o . ~ ' x  i ,  g o ) t *  
q ~ 0  

x { q +  1} m~ " ( x { q } )  t 
q + 1 ' when  x = t (25a) 

x~q+ l~= T2 (x~q~) ' - when  x = f  (25b) 
q + l  ' 

We first focus on the funct ions X {q~ and X {q~x. W e  
will then  explain how to obta in  their  numer ica l  values,  
x{q~x and y~q~x respectively.  Since eqn.  (24) is X, the  O, T ° .,,'x I ,  T ° 

series expans ion  of  X = X  t°}. W e  obta in  the defini t ion 
of  X m by deriving X{°~: we set  q to 0 in eqn. (25a) or  
(25b). W e  deduce  in the s ame  way the  definit ion o f  
X {2t f rom tha t  of  X °~, and  so on (Table  1). Some  o f  
the above  fo rmulae  explain eqn. (24) by giving m o r e  
explicit relat ions:  when  we set q to 0 in eqn.  (25a),  
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(X~°)) ' = X  m is the thermodynamic relation (4a) when 
X - H ,  it is eqn. (5) one when X=-S, or it is eqn. (7) 
one when X - G .  In the same way, eqns. (25a) and 
(25b) summarize eqns. (6), ( l la)-(13a),  (4b) and 
(l lb)-(13b),  e.g. when X = G ,  X m is G ' = - S ,  and 
- (So, ro +S~Xro)t is first-order term of GI, r (eqn. (7a)). 
We shall see that numerical values of C o ' are not very 
useful (and difficult to measure) for our purpose. For 
consistency (Table 1) when writing formula (24), we 
then do not write the X ~q> terms that include any 
C~;' contribution. We will test approximations with ex- 
perimental data on Cp and other functions. We calculate 
numerical values of ,~v~qro. 7.0 (typically "-'0,/"J~{1}T ° ----__So, To) 
from tabulated Go, To, Ho, To or Coo.To standard values. 
Numerical values ,~fy(q~x are not tabulated. To calculate ,J*-XXl, T ° 

them, we propose to use D and • Taylor's series 
expansions to obtain formulae such as eqn. (15) and 
to substitute them into eqns. (16), (18)-(21a), (22) and 
(23). The first-order terms of these formulae are eqns. 
(14b), (16b) or (18b) with (19b)-(21b) where we set 
T to T °. Explicit writing of eqn. (24) is now straight- 
forward (some of them will be in Eric Giffaut's thesis). 

D'  We then need numerical values of D I .  TO , L TO, 

. . . . .  We calculate D '  " D 1 ,  To, . . . ,  • T  o, ETO , • T  ° . . . .  I , T  o, D I ,  To 

... values from tabulated DI. r values, e.g. ref. 11. We 
measure •T as a function of T to deduce ero, e~-o, 
e~o by curve fitting (see next section). 

3. Results and discussion of numerical data and of 
equations 

3.1. Influences of  temperature on thermodynamic 
functions 

3.1.1. Some U and Pu redox equilibria in acidic and 
carbonate media 
We have found [9, 10] roughly linear variations from 

5 to 70 °C for the reversible U and Pu redox potentials 
in acidic and carbonate solutions: by using eqns. (7) 
and (9), we deduce the mean value of (AS~, To) from 
the slope of El, r (as a function of T) measurements, 
and we detect (eqn. (5)) the influence of ACp on EI. r 
(also AGI, r), but it is not straightforward to deduce 
ACp,,~o. We fit experimental Et, r data to the second- 
order (eqn. (24), where X - G )  power function as a 
function of T (constant /). The results are El. TO, 
AS~. To, and inaccurate (ACp,.~o) values. They are not 
much different from the previous interpretation [9, 10] 
where we disregarded ACp. The potential E(Ag/AgCI) 
of the reference electrode that we are using in our 
measurements is tabulated only when I = 0. Power func- 
tions formally equivalent to the Taylor series expansion 
(24) are typically proposed [15]. For consistency we 
treat the original experimental E(Ag/AgC1) values in 
the same way as our U and Pu data to obtain them 

vs. the normal hydrogen electrode. We will give sup- 
plementary results of this data treatment elsewhere 
[161. 

3.1.2. C02(aq)--bicarbonate equilibrium 
There are few published measurements of the heat 

capacities of soluble actinide complexes [17]. The ACp 
value of CO2(aq)-bicarbonate equilibrium [18] varies 
between -400  and - 5 0  J tool-1 K -1 in NaCI (0-5 
M) from 0 to 150 °C. Some data were measured at 
saturated water pressure which varies with T. Hence, 
we should use other terms in the equations of Table 
1 to take into account the influence of pressure; we 
believe that the Cp value at (constant) atmospheric 
pressure is not much different. In pure water or at 
low I, ACp increases with T (up to 70 °C) and then 
decreases, but at I >  3 no ACp decrease is observed at 
least up to 150 °C. This last (at h i g h / )  shape of the 
curve representing ACp variations with T is usually also 
observed for solid compounds (see below). The AG 
variations with T seem to be roughly linear; this means 
that the first-order term -ASI, To predominates and 
consequently the second, ACp,, To/2T, and further terms 
(Table 1) have small or negligible influence in these 
conditions, log K variations with T are classically in- 
terpeted with the Van't  Hoff equation ( l lb) .  We have 
then plotted the carbonate equilibrium log K variations 
as a function of T or as a function of 1/T. These 
representations are roughly straight lines: ACp,,To and 
further terms have again a small or negligible influence 
on log K variations with T; the main contribution is 
due to HI, To. Van't  Hoff representation is the better 
log K representation in this case. For consistency with 
the usual databases, we only fit AC0~., o and we use 
published [18] AGI, ro, ASI,  TO and ACp,.r 0. AG and log 
K representations are then predictions and not curve 
fitting. Anyhow, log K and AG changes as a function 
of T are relatively small; typically log K varies by less 
than 0.4 unit, at I = 0 .  

3.1.3. Formation of  some U compounds 
We calculate the variations in the thermodynamic 

functions from 290 to 390 K for some solid U compounds 
(Table 2) by using eqns. (la), (2), (3), (8) and (10). 
We find (in this T range) that Cp variations are usually 
lower than 20 J K-1 mol-1 and S variations are lower 
than 60 J K -1 mol-1; this induces less than 50 kJ 
mol-1 variations in G (Table 2). The a term of these 
developments (eqns. (la), (2) and (3)) is then always 
the most important term. This means that Cp is roughly 
constant in this T range. Still, for further discussion 
about solubility, heat capacity data for soluble species 
are lacking. 
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TABLE 2. Influence of T on formation enthalpy and entropy of some U compounds 

Tea Tmi, Tab Tm~x Tab Sr,,~ - Sr, i, Gr,,~ - Gr,  i, 
(J K -1 mol - I )  (kJ mo1-1) 

U(cr.) 298 923 941 8.5 0 
UO2(cr.) 111 250 600 1978 19.7 17.0 
UO2.6667(cr.) 119 233 600 3938 24.8 21.9 
/3-UO2(OH)2 291 298 473 41.8 43.5 
/3-UO3 113 298 678 3450 25.1 25.1 
UO3" 2H20(cr.) 298 286 400 54.4 61.3 
UCl3(cr.) 74 298 1000 1128 28.1 21.5 
UCl4(cr.) 29 298 800 2197 36.3 30.1 
UCls(cr.) 298 600 3940 45.1 34.6 
UC16(cr.) 65 298 452 4946 52.9 41.1 
UOCI(cr.) 105 298 900 5283 21.7 15.3 
UOCI2(cr.) 97 298 700 4449 29.0 22.5 
UOC13(cr.) 14 298 900 2640 35.1 30.2 
UO2CI(cr.) 93 298 1000 4050 26.9 24.3 
UO2C12(cr.) 100 298 650 6311 32.9 31.4 
U2OzCIs(cr.) 98 298 700 6588 66.9 50.8 
(UO2)2Cl3(cr.) 114 298 900 6353 62.7 54.3 

Xr,~ (or Xrm~,) is the maximum (or minimum) value of X (S or G) from 290 to 390 K. We calculate these values from Grenthe et 
al. [11] by using eqns. (la),  (2), (3) and (9). Cp=a when Tea<T<Tab, but eqn. ( la)  is only valid between Train and Tmax, so this 
estimate is valid only in the corresponding temperature domain. Tea= le/al °'5 and Tob= la/bl. Cp~-e/T 2 when T < T ~  and Cp=bT when 
Tab < T. Typically, the heat capacity of U(cr.) is nearly constant from 298 to 923 K and its variations with T are linear from 923 to 
941 K, but the heat capacity of UO2(cr.) is nearly constant from 250 to 600 K, since the fitted parameters b and e have negligible 
influence in the temperature range where the formula ( la)  is valid. 

3.1.4. Discussion o f  formulae 
We previously [10] disregarded the influence of 

ACp,.T on El. 7- variations with T. This is attributed to 
ASz, ro, the estimated mean value (ASI, To) which in- 
cludes (disregarded) nCp,.To contributions. (ASz. to) is 
indeed a little different from ASz. to. In the same way, 
when disregarding ACpl. To we fit El. to, ASI, ro and we 
estimate (ACp,.To) which might include a (disregarded) 
AC~I.To contribution etc. A first-order rough approxi- 
mation on ACp is enough to account for AGI, r or log 
Kz. r results but not for ACp,.T results. Interpretations 
deduced either from approximation (la) or from ap- 
proximation (lb) should both be just as good (Table 
1) in our T range since (Table 2) a~-Cp,.To and 
C ' p , , ro -~b -2e /T  °3. The  first formula (la) is supposed 
to be valid in a wider T range but the above discussion 
on numerical values suggests that, in aqueous solution 
conditions at atmospheric pressure, it is equivalent to 
the Taylor series expansion (lb) of Cp to the second 
order and then, at the most, the corresponding equations 
(24) for G, H, S and In K (Table 1). Chemical speciation 
predictions only need E and log K thermodynamic 
functions: anyhow, Cp variations induce only small 
variations on them (Fig. 1). 

In solution chemistry around 10-100 °C, "zero" (dis- 
regarding S), "first" (disregarding Co, and hence S and 
H are not T dependent) or "second" (Cp not T de- 
pendent) order estimates can be used to predict chemical 
speciation depending on the needed accuracy. The 

validity domain of these approximations is correlated 
to T ° . T ° could also be chosen in the middle of the 
working T range to minimize uncertainties. We do not 
do it for consistency with the classical thermodynamic 
database. 

Taylor's series expansions are approximations; hence 
classical thermodynamic relations, typically eqns. (4a), 
(4b) and (5)-(8), are valid only within the same order 
of approximation: we always disregard the third- or 
fourth-order and further terms in eqn. (24) since they 
should also include C~',.To which we disregard, even 
when there are also Cp,. To, C~,,. To or C~,. To contributions 
to these higher terms. For many solids, and in the 
above example in high I electrolyte, Cp,. T increases with 
T and is then constant in the T range that we are 
discussing. In pure water and in low I electrolyte for 
the above example, the shape of the curve representing 
Cp,. T variations with T is different: this type of behaviour 
might be related to physical properties of electrolytes. 
It is then not straightforward to propose a general 
simple analytical formula that would account for 
Cp,.T variations with T in all cases. Anyhow, this has 
little practical consequence for chemical speciation. 
These approximations are certainly no longer valid at 
higher T, where the thermal energy involved in the 
physical phenomena related to Cp is no longer much 
smaller than the energy of chemical bounds. Since 
activity coefficients and excess functions (17) are related 
to weak interactions (and not chemical bonds) there 
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Fig. 1. Specific interaction coeffÉcients • as a function of tem- 
perature. We draw the lines with the equation er=•ro+e~-o 
( T -  T°), where er is the value of E at temperature T and T ° = 298.15 
K. We calculate er from mean YT data of the MC1 electrolyte, 
and we then fit ero and e~o. We fit AETO and A•~-o from AcT data. 
Pu(VI )  ~ PUO2(CO3)34-; P u (V)  ~ PUO2(CO3)35- . W e  plot 
• = e(M z+, CI-)  and Ae = •[Pu(VI), CIO4-] - •[Pu(V), 
C104-]+•(Na ÷, CI-). See Table 3 for references, numerical 
values and other examples. 

is no  r ea son  to f ind the  same  t e m p e r a t u r e  behav iou r  
for excess and  idea l  funct ions .  

3.2. Temperature variations of  activity and specific 
interaction theory coefficients 

A t  each  T, we fit er  va lues  o f  some  ch lo r ide  e lec t ro ly tes  
f rom p u b l i s h e d  m e a n  3, d a t a  (Tab l e  3, Fig.  1), by us ing 
the  S IT  for  I changes  at  cons t an t  T. Some  o f  the  3' 
d a t a  were  m e a s u r e d  at  T >  100 °C, at s a t u r a t e d  wa te r  
v a p o u r  p res su re .  W e  se lec t  the  d a t a  only up to 150 
°C. W e  fit •To and  C~-o (Tab l e  3) on  the d a t a  at  
a t m o s p h e r i c  p r e s s u r e  and  we fit ~ o  and  *' Ero f rom those  
at  h ighe r  p res su re :  we f ind negl ig ib le  d i f fe rence  b e t w e e n  
the resu l t s  o f  the  two fit t ings. 

In  the  s ame  way, by  us ing class ical  m e t h o d o l o g y  [11], 
we can t r ea t  our  r edox  m e a s u r e m e n t s  [9, t0] by first 

TABLE 3. Specific interaction coefficients • as a function of 
temperature 

ox/red AEro A • ~ . o  Reference 
couple for 

This work Ref. 11 original )'r 
or Aer data 

U(VI)/U(V) 0.95 0.77 -0.006 9, 10 
Pu(VI)/Pu(V) 0.28 - 0.0015 10 
PuO22+/PuO2 + 0.25 0.32 -0.001 10 
pu4+fpu  3+ 0.36 0.55 0.002 10 

MC1 er~ (or E*) E~o (or E*') 

HCl 0.11s 0.12 -0.0005 19, 20 
LiC1 (0.09) a 0.10 - 0.0000 21-23 
NaCl 0.03 0.03 0.0001 23, 24, 

(0.035) a ( - -0 .0002)  a 14, 23" 
KCl - 0 . 0 1  0.00 - 0 . 0 0 0 2  19, 23, 25, 

( - 0.00) a ( - 0.0000) a 23, 26 a 
SrCl 2 0.15 -0.0010 22 

• r=ero+e~-o (T-T°) ,  where er is the value of • at temperature 
T and T°=298.15 K; the range of T is usually a 0-70 °C. We 
calculate er from mean Yr data of the MCI electrolyte, and we 
then fit ero and e~-o. We fit Aero and A~o from Aer data. 
M(VI) -= MO2(CO3)34-; M(V) --- MO2(CO3)a 5-. A•(ordred) = e(ox, 
N) -e ( red ,  N)+e(Na +, Cl-); N is Na + when ox and red are 
anionic carbonate complexes, and it is C104- when ox and red 
are the aquo cations, e(ox, N)~o is the value of E(ox, N) at T= 7 "°. 
• has units of kilograms per mole and e' has units of kilograms 
per mole per kelvin. 
ae~o and Ero*' are fitted from y measurements up to 150 °C, at 
saturated water vapour pressure for LiCl and the second lines 
of NaCl and KC1 results. 

using the  SIT  for  the  inf luence  of  I and  by then  using 
a Tay lo r ' s  ser ies  expans ion  for the  inf luence of  T: we 
first fit E0, r and  AET values  at each  T, f rom El, 7- da ta ,  
by using eqns.  (9) and  (18b).  W e  then  fit the  s t a n d a r d  
va lues  Eo, To and at leas t  ASo, 7-0, by using eqns.  (9) and  
(24) f rom Eo, r da t a  f i t ted at  the  first s tep.  W e  finally 
use  a Tay lo r ' s  ser ies  expans ion  for Ae to fit Aero and  
at  leas t  AE~o f rom Aer f i t ted at  the  first s tep.  W e  can  
also t r ea t  the  da ta  the  o t h e r  way a round .  A t  the  first 
s tep,  by using eqns.  (9) and  (24) at  each  / ,  we fit 
E,, ro and at  least  ASj, ro (which we do not  d i rec t ly  
ca lcu la te  with the  prev ious  me thodo logy)  as a funct ion  
o f  changes  in T. W e  can then  fit again Eo, ro and  
AeTo by using the  classical  S IT  equa t ion  (18b) on  the  
first s t ep  resul ts  Et. to. W e  then  fit Ae~o by using the  
new SIT  equa t ion  (20b) for  en t ropy  on the first s tep 
resul ts  AS,, ro etc.  T r e a t m e n t  of  e xpe r ime n t a l  da t a  by 
any o f  these  p r o c e d u r e s  should  be consis tent :  the  l ink 
b e t w e e n  these  two da t a  t r e a t m e n t s  is the new SIT  
fo rmu lae  (14b), (16b) and (18b) - (21b)  inc luding  the  
inf luence  of  T. W e  can also fit the  p a r a m e t e r s  o f  eqn.  
(24) a l t oge the r  and  then  ca lcu la te  S~. r, Hj. T etc. by 
using again  this equa t ion  (Tab le  1), bu t  two-s tep  da t a  
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treatments are needed to validate these equations, i.e. 
to control consistency. 

The variations in Er or Ae r with T seem to be linear 
(Fig. 1). We have also checked from tabulated /91, r 
values [11] that D[, T is not very T dependent. A first- 
order expansion (as a function of T) of eqn. (14b) 
seems a reasonable estimate, in the present work (Fig. 
1). 

Our Ero and Aero determinations (Table 3) are in 
accordance with published results [6--8, 10, 11]. We 
cannot compare our ~ o  or AE~o determinations with 
others, since we cannot find any published results (except 
recently in ref. 10 by one of us). As usual [11] similar 
ions have similar numerical values of Ero, eg. 
~(HC1) = E(LiC1) and e(NaC1) = e(KC1). • decreases with 
atomic number among the alkaline metals. We now 
observe (Table 3) the same analogies for e'. As we 
already observed [10] AE[M(VI)/M(V)] is an exception, 
probably as a result of ion pairing. Published numerical 
values of E for most complexes with charge more negative 
than - 5  are surprising, eg. the limiting carbonate 
complexes of M(IV) and M(V) and the trinuclear M(VI) 
carbonate complex [10, 11]. 

log Ks, ~ AGs, r or AHs, r can be directly measured 
from solution chemistry, electrochemical or calorimetric 
techniques at fixed T and I in each experiment. ASs, r 
and ACt,I. T can then be deduced from them. When 
typically measuring log Ks, T or AGs, r, we calculate Aer 
and check that it is not I dependent by [11] plotting 
log Ks, T - A 7 2  Ds, r VS. m (eqn. (16b)): it must be a 
straight line with slope -ACT. Using eqn. (18b) for E 
(eqn. (9)) measurements is equivalent [6-11]. One could, 
in the same way, plot (eqn. (19b)) AHs. r - r T  2 Az 2 
D~, ras  a function ofrn, to calculate Ae'r from calorimetric 
experiments. For verification one should also plot 
ASs, r - r  Az 2 (Ds, r +  TD~,r) (eqn. (20b)) or A C p , . r - r T  
Az 2 (2D),r+ TDT, r) (eqn. (21b)) as a function of m. 
These data treatments can be performed at any (con- 
stant) T. It is also possible to fit all the parameters 
X~o~o, ero, e~, and eventually e~-o together by using 
eqns. (15), (16b)-(21b) and (24). 
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Appendix A: Nomenclature 

D/,T 

b~=B~ 

E 
F 

f 
K 
n 

r 

arI'/2/(1 + br l l~) ,  where a25 *c = 0.5091, 
b25 °c = 1.5 [A1] 
where B is taken from ref. A1 and n is 
assumed to be constant 
normal redox potential 
Faraday number 
1 / T -  I /T  o 

equilibrium constant 
number of electrons involved in redox equi- 
librium 
R In(10), where R is the molar gas constant 
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t 
E* t 

X 

Xt 
X t~ 

'X 
"X 

x{q} 

r-r o (K) 
(Oe*/OT)p .... where Psat is the saturated water 
pressure, and E* is at this pressure 
X ~°}, G, H, S, Cp, In K or log K where we 
usually omit ~o~ 
(0X/a73p -- (0X/0t)p 
(iV')' 
[0X/0(I/T)]p = (OX/af)p 
'('iv) 
qth-order derivative of X with respect to T 
(or l/T), hence X '  = X  °} etc. 
excess function of X, defined by eqn. (17); 
we also usually omit ~o} 

AX 

< rl, To> 

algebraic summation ofXwith stoichiometric 
coefficients 
numerical value of Y at ionic strength I and 
temperature T, where Y is typically X or X' ,  

. o .  

mean numerical value of Y when T varies 
about T=  T ° 

Reference for Appendix A 
A1 I. Grenthe, J. Fuger, R. Konings, R. Lemire, A. Muller, C. 

Nguyen-Trung and H. Wanner, Chemical Thermodynamics of 
Uranium, NEA-OECD, Elsevier, Amsterdam, 1992. 


